
CSCC09 Week 3 Notes

1
HTTP Protocol:

- Introduction:
- HTTP stands for HyperText Transfer Protocol.
- The HTTP protocol is a network protocol for requesting/receiving data on the Web.
- A client is usually a web browser.

A server is a machine that hosts the website.

- Communication between clients and servers is done by HTTP requests and HTTP

responses like such:
1. A client sends an HTTP request to the web.
2. A web server receives the request.
3. The server runs an application to process the request.
4. The server returns an HTTP response to the browser.
5. The client receives the response.

- The server usually runs the standard TCP protocol on port 80 by default.
I.e. The browser connects to the server on port 80 by default.
Note: Port 80 is used if we’re using HTTP. If we’re using HTTPS, the port is 443.

- The URI (Uniform Resource Identifier)/URL (Uniform Resource Locator) specifies
what resource is being accessed.

- A Uniform Resource Identifier (URI) is a unique identifier used by web technologies.
URIs may be used to identify anything, including real-world objects, such as people and
places, concepts, or information resources such web pages and books. Some URIs
provide a means of locating and retrieving information resources on a network (either on
the Internet or on another private network, such as a computer filesystem or an Intranet),
these are Uniform Resource Locators (URL).
I.e. A URI is an identifier of a specific resource while a URL is a special type of URI that
also tells you how to access it.

CSCC09 Week 3 Notes

2
- Anatomy of a URL:
- E.g.

- HTTP is the protocol.
- www.utsc.utoronto.ca is the name of the server.
- Then, you have the path which refers to a resource in the webserver.

Note: Sometimes, you might not see the resource in the URL.
- Then we have a question mark (?). This question mark represents the start of query

parameter(s). Query parameters are usually key-value pairs.
Note: If there are multiple query parameters, they are separated by an ampersand (&).
E.g. Consider this URL:
http://www.google.co.uk/search?q=url&ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:en-G
B:official&client=firefox-a
Notice that each query parameter is separated by a &.

- Note: The query string contains the path, resource and parameters.
- HTTP Request Methods:

Request Method Explanation

GET Requests a representation of the specified resource. Requests using GET should
only retrieve data.

POST Used to submit an entity to the specified resource, often causing a change in state
or side effects on the server.
I.e. Adds an unidentified resource.

PATCH Used to update to a resource.

PUT Adds an identified resource.
The difference between POST and PUT is that PUT requests are idempotent. That
is, calling the same PUT request multiple times will always produce the same result.
In contrast, calling a POST request repeatedly has side effects of creating the same
resource multiple times.

DELETE Deletes the specified resource.

CSCC09 Week 3 Notes

3
- HTTP Request:
- An HTTP request contains the following information:

- A request method.
- A query string.
- A header, which is a key-value pair.
- An optional body which contains data.

- Curl Command:
- We can use the curl command to send HTTP requests to a server.
- Syntax: curl options url

options include:
- -v verbose
- --request request_method
- --data request_body
- --header header

- HTTP Response:
- An HTTP response contains the following information:

- A status code.
- A header, which is a key-value pair.
- An optional body which contains data.

- Status Codes:
- 1xx - information
- 2xx - success
- 3xx - redirection
- 4xx - client error

I.e. The client tries to find a web page that doesn’t exist.
- 5xx - server errors
- Method Properties:
- An HTTP request/response:

- May have a request body.
- May have a response body.
- May not have side effects. (Safe)
- May have the same result when called multiple times. (Idempotent)

- The developer/programmer makes the choice.
- What the standard recommends

CSCC09 Week 3 Notes

4
- Difference Between HTTP and HTTPS:
- HTTP is unsecure while HTTPS is secure.
- HTTP sends data over port 80 while HTTPS uses port 443.
- HTTP operates at the application layer, while HTTPS operates at the transport layer.
- No SSL certificates are required for HTTP, but it is required that you have an SSL

certificate and it is signed by a CA for HTTPS.
- HTTP doesn't require domain validation, whereas HTTPS requires at least domain

validation and certain certificates even require legal document validation.
- There is no encryption in HTTP, whereas with HTTPS the data is encrypted before

sending.
JavaScript on the Server:

- We’ll be using Node.js for this class.
- Node.js:

- Runs on Chrome V8 Javascript engine.
- Has non blocking-IO (asynchronous/event-driven).
- Has no restrictions unlike when js is running on the browser.

- E.g. of a node.js file reading another file:
Suppose we had a file called “test.txt” with the line “This is in a file.” in it.

We can use the following javascript code to read it.

Note: We couldn’t use JavaScript on the browser to read files on a user’s computer.

- Blocking code is code that runs one instruction after another, and makes next
instructions wait.

- Non-blocking code means that we don’t have to wait for some code to run before
running other code.
I.e. Blocking refers to operations that block further execution until that operation finishes
while non-blocking refers to code that doesn’t block execution.

- Blocking methods execute synchronously and non-blocking methods execute
asynchronously.

CSCC09 Week 3 Notes

5
- E.g. of Building an HTTP server with Node.js:

- We need to process HTTP requests and execute different actions based on:

- The request method
- The url path
- Whether the user is authenticated

- A router can be written from scratch but it is tedious. Instead, we’ll use the backend
framework Express.js.
Note: Express is not part of the default library in Node.js. We have to install it.

- E.g. Express.js with multiple request methods:

CSCC09 Week 3 Notes

6
- E.g. Express.js routing based on path:

- The body of HTTP request and response is a string. A problem arises if we want to pass

data structures. 3 possible solutions are encoding it with either:
1. URI encoding (sometimes used)
2. XML encoding (rarely used these days)
3. JSON encoding (very frequently used these days)

- By default, the frontend and backend uses URI encoding. If you want to encode using
JSON, you need to tell the frontend/backend that you’re using JSON. To do it, you can
use “application/json”.

JSON:
- Stands for JavaScript Object Notation.
- Originally, we used URI encoding, but it was hard to send data structures. Then, we

used XML, but it’s very hard for people to read. Then, someone came up with JSON.
- It is a way to encode data structures into a string. JSON is not a language.
- JSON is a human readable lightweight open format to interchange data.
- Since 2009 browsers support JSON natively.
- A JSON data structure is either:

1. array (indexed array)
2. object (associative array)

- JSON values are:
1. string
2. number
3. true
4. false
5. null

- Serialization means that we’re converting JavaScript into JSON.
I.e. var myJSONText = JSON.stringify(myObject);

- Deserialization means that we’re converting JSON into JavaScript.
I.e. var myObject = JSON.parse(myJSONtext);

CSCC09 Week 3 Notes

7
- Example of serialization and deserialization:

Ajax:

- AJAX is not a programming language. It is a simple JavaScript command.
- AJAX is a technique for accessing web servers from a web page without refreshing the

page.
I.e. AJAX allows web pages to be updated asynchronously by exchanging data with a
web server behind the scenes. This means that it is possible to update parts of a web
page, without reloading the whole page.

- AJAX stands for Asynchronous JavaScript And XML.
- AJAX revolutionized the web. It started with Gmail and Google Maps.
- Advantages:

1. Low latency
2. Rich interactions

- Consequences:
1. The webapp center of gravity moved to the client side.
2. Javascript engine performance race.

- AJAX just uses a combination of:
1. A browser built-in XMLHttpRequest object to request data from a web server.
2. JavaScript and HTML DOM to display or use the data.

- How AJAX works:

1. An event occurs in a web page.
2. An XMLHttpRequest object is created by JavaScript.
3. The XMLHttpRequest object sends a request to a web server.

CSCC09 Week 3 Notes

8
4. The server processes the request.
5. The server sends a response back to the web page.
6. The response is read by JavaScript.
7. A proper action, like page update, is performed by JavaScript.

- To send a request to a server, we use the open() and send() methods of the
XMLHttpRequest object.
xhttp.open(method, text, true);
xhttp.send() or xhttp.send(string);
Note: Use xhttp.send() for GET and xhttp.send(string) for POST.

- Server requests should be sent asynchronously. This means that the async parameter of
the open() method should be set to true.

- By sending asynchronously, the JavaScript does not have to wait for the server
response, but can instead:

1. Execute other scripts while waiting for server response.
2. Deal with the response after the response is ready.

E.g.

- Concurrency is a big issue in Ajax.
- Example of a concurrency issue in Ajax.

CSCC09 Week 3 Notes

9
Callback:

- In JavaScript, functions are objects. Because of this, functions can take other functions
as arguments, and can be returned by other functions. Functions that do this are called
higher-order functions. Any function that is passed as an argument is called a
callback function.

- Callbacks are a way to make sure certain code doesn’t execute until other code has
already finished execution.
I.e. Callbacks make sure that a function is not going to run before a task is completed
but will run right after the task has completed. It helps us develop asynchronous
JavaScript code and keeps us safe from problems and errors.

- The benefit of using a callback function is that you can wait for the result of a previous
function call and then execute another function call.

- Note: The callback function is helpful when you have to wait for a result that takes time.
For example, the data coming from a server because it takes time for data to arrive.

- Since JavaScript is an event driven language, we can use callback functions for event
declarations, too.

- Example that JavaScript is asynchronous.
Consider this Python program:

When you run it, it waits for 10 seconds before printing First and then prints Second.
I.e. It runs in a sequential order.

Consider this JavaScript program that does the same thing:

CSCC09 Week 3 Notes

10
When you run the program, even though you call first() first, 2 will be printed first.

This is because JavaScript is asynchronous.
Note: In the above JavaScript file, the function in setTimeout is an example of a callback
function.

- Example of callback functions used in events.
Consider the HTML and JavaScript code below:

We have 2 callback functions in the JavaScript code.
The first is in window.addEventListener and the second is in
document.querySelector("#button").addEventListener.
The functions won’t run unless the event is triggered.

